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Abstract

Visual localization is the task of estimating the camera position
and orientation relative to a given environment representation, which
is used in applications such as mobile robotics, autonomous driving,
and augmented reality. Currently, the environment has to be scanned
by a human operator or explored by an autonomous system to create a
precise and detailed map, often taking a large amount of storage space.
Our approach aims to circumvent the scanning phase and decrease the
memory footprint by using a publicly available lightweight environment
representation in the form of building floor plans or human-readable
digital maps. We extract the outline of the environment visible in
images and use hierarchical localization on top of the layout represen-
tation, using image retrieval for coarse pose estimate and refining the
pose by ICP algorithm. We also try to entirely replace the images
in the retrieval step with the extracted outline geometry. The initial
experiments show that the approach might achieve reasonable perfor-
mance while keeping the storage needed for environment and image
representation at a minimum.

1 Introduction

The visual localization task aims at camera pose estimation based on given
image data. Thanks to mobile robotics, autonomous driving, and augmented
reality applications, the research problem is currently fairly popular. Apart
from input image data, each visual localization system needs prior knowl-
edge about the deployment space, i.e., an environment representation. Such
representation can have a form of a point cloud, mesh, image set, can be
implicitly stored in a neural network, or have a form similar to a human-
readable map. The last-mentioned approach is particularly interesting as
it is often already available and can be shared and easily adjusted by both
humans and machines. We, therefore, try to develop a visual localization
system that could work on top of the human-readable representations in the
form of floor plans and maps of urban areas.
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Figure 1: Examples of human-readable maps: left - floor plan, right - out-
door map of an urban area (Open Street Maps).

1.1 Related work

The current state-of-the-art visual localization approaches are often based on
structure-based hierarchical pipelines [23]. The environment is represented
by a set of database images with known poses and a triangulated point
cloud with appended local images features. First, a coarse pose estimate is
obtained, e.g., by using image retrieval based on image-level descriptors [1,
15] to find similar database images with known poses. The coarse estimate is
then refined in the second step by performing local image features matching
[17,22,25] between the query image and the triangulated points followed by
camera pose estimation. The pose estimate is done by solving a minimal
geometric problem in RANSAC [4,11] scheme.

To get the database images, the environment has to be visited before
the deployment or well covered by publicly available imagery. The creation
of a feature point cloud by an SfM pipeline [24] can become highly time-
consuming, especially for larger scenes. There exist several works which try
to overcome these issues by using other scene representations, such as floor
plans or building outlines, which are often readily available without the need
for scene capturing. Moreover, the pure geometry-based representations are
much more robust relative to image-based representations, which are subject
to illumination, weather, and occlusions.

The main issue for geometry-based visual localization systems comes
with alignment between the two different data modalities. The scene rep-
resentation is often purely geometry-based, but the input is still an im-
age whether RGB only [2, 3, 8, 9, 12, 13, 16, 20, 27] or with depth measure-
ments [9,18,19,28]. Different solutions to the modality issue comprise usage
of line features in the image domain [2,3,8,27], aligning depth measurements
to the scene layout [14,19,28] or applying SfM on RGB image sequences and
aligning the extracted geometry [9, 12, 20]. We also try to align the 3D ge-
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Figure 2: Architecture of the whole localization pipeline with layout re-
trieval. See Fig. 3 for the description of layout extraction procedure.

ometry extracted from the images to the scene, but just after distillation to
get the same modality for both image and environment representation.

Some approaches are using semantic scene understanding to extract only
relevant geometry from the scene [2,3,5] or to get higher-level features such
as doors, windows, or text labels, which might be present in the scene rep-
resentation [16, 19, 27]. The potential camera poses can be tested all in a
grid-like manner [2, 3, 13], or the space of candidates can be filtered out,
e.g., by Monte Carlo Localization approach [6, 14, 18, 19, 28]. Our approach
reduces the potential space by using the retrieval to find a coarse pose esti-
mate.

2 Localization Using Environment Layout

This section describes the developed pipeline, composed of layout extraction
from depth images, retrieval step for obtaining coarse pose estimate, and
layout alignment step for pose refinement.

2.1 Layout Extraction from Images

To match a query image to a given layout map, we need to extract the layout
visible in the image. The first idea was to extract the 3D geometry visible in
the image by employing a state-of-the-art monocular depth estimator [21].
The following part of our layout extraction relies on planar region extrac-
tion from the depth estimates. Unfortunately, the initial experiments on
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Figure 3: The process of layout extraction from an image: 1 The depth map
is either directly obtained from a stereo camera or estimated from an RGB
image, 2 depth map is reprojected to 3D, 3 points belonging to horizontal
planes and non-planar structures are filtered out, 4 the remaining points
are divided into individual planar segments, and the plane parameters are
computed, 5 the outlines in the camera coordinate frame are generated by
intersecting the extracted plane segments with a selected ground plane.

the depth extractors showed large geometry distortion, which would make
the plane extraction impossible. Therefore we abandoned the idea of layout
generation from a single RGB image until we find another reliable way of ge-
ometry extraction and we implemented and tested the rest of our pipeline on
RGB-D data, which already contains high-quality geometry measurements.

Once we have the scene geometry in the form of a depth image, we can
transform it to a point cloud, compute point normals and estimate gravity
direction. We assume that the majority of the visible scene adheres to the
Manhattan world assumption, i.e., it is composed of planes of three major,
mutually perpendicular, orientations. This assumption is reasonable as the
shape of most urban buildings is composed of a set of cuboids, and the same
applies to the majority of indoor spaces. The second assumption is that the
images are taken in an approximately horizontal direction, and therefore,
the majority of the visible planes in the scene are walls spanning through
two major Manhattan orientations. The third perpendicular orientation
corresponds to the ground or ceiling. The normal of the found ground plane
can be used as an initial estimate of the gravity direction vector, which is
then iteratively refined.

With the knowledge of gravity direction, we can filter out parts of point
cloud belonging to horizontal planes, which do not have any equivalent in
2D map representations. The rest of the points are divided into the two
remaining Manhattan directions, and DBSCAN [10] algorithm is used to
extract individual planar regions. The regions are filtered by their size to
eliminate small patches, which usually correspond to non-planar geometry,
and plane parameters are computed for the remaining regions. In the end,
the planes are intersected by a horizontal plane at the height of the camera
center to get the layout lines, which are limited to line segments based on the
planar region boundaries along the line. The layout can be further refined
by merging near colinear line segments. Note that the layout extracted from
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Figure 4: A simple example of layout extraction on real data. From left:
RGB image, depth map (from a stereo camera), reprojected point cloud with
color coding based on the three major Manhattan directions, estimated 2D
layout in camera coordinate frame.

an image is represented in the corresponding camera coordinate frame.
As the field of view of a single image can be especially indoors relatively

small, capturing only a limited part of the scene geometry and making the
alignment difficult or impossible, we also tested integrating the geometry
over a sequence of consecutive image frames. The point clouds extracted
from a sequence of depth images can be registered to create a single point
cloud with geometry visible in the images along the sequence. This joint
point cloud can then be used to extract the layout for the whole sequence.
Of course, this method can be used only when the consecutive images have
an overlap large enough, so the registration does not fail.

2.2 Layout Maps of Environment

To align the layout extracted from an image to the correct location in the
map, we need to represent the environment in the same way, i.e., a set of
line segments with known parameters. Some input formats such as 2D CAD
drawings, publicly available maps, or other vector graphics formats can be
used directly. In the case of rasterized formats like images, hand drawings,
or occupancy maps, we have to vectorize the map to get precise line segment
parameters usable for alignment. Line detection in images is a problem with
well-matured solutions [7], as the task is reliably solvable even with standard
image processing methods (without deep learning).

Environment representations in usable format are usually available, re-
ducing the need for scanning or manual creation of the maps before system
deployment. The majority of buildings have some construction documen-
tation, often containing CAD drawings of the interior layout. Most urban
areas are well covered by publicly available maps, such as Open Street Map
(OSM). OSM also provides an API that can easily be used for filtering and
downloading the building outlines right in the vectorized format.
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2.3 Retrieval Stage

Image retrieval is the task of searching for the most similar database image
to the query image given as the input; specifically, our requirement is to
find an image capturing the scene from as similar pose as possible. As the
database images have known camera poses, we can use the pose of similar
database images as a rough estimate for the query image camera pose.

Direct comparison of pixel values of two images is not robust enough be-
cause of illumination, seasonal and weather changes, and occlusions caused
by objects such as people, vehicles, or furniture. The standard solution is to
create a representation of the image in the form of a numeric vector, which
would be robust enough and make the computation of similarity between
two images easy. We are using NetVLAD [1] deep-learning-based image-
level descriptor, which is known to work reasonably well for the localization
task both indoors and outdoors. The dissimilarity between two images can
be simply computed as the Euclidean distance between the two descriptors
of the images.

Using the image retrieval for rough pose estimation has the disadvantage
of higher storage space consumption as the database images and potentially
their high-dimensional descriptor have to be stored. On the other hand, the
layout extracted from the images are very compact as we are storing just
endpoint coordinates of a small set of line segments, and therefore the idea
to use the extracted layouts for retrieval task sounds compelling.

We tried to develop a simple descriptor for the layouts, which would
capture the essence of line segment set geometry and allow direct similarity
comparison between two layouts. The descriptor takes the distances of the
line segments from the camera center and their angles from the optical axis
and creates histograms of the values with a selected number of bins. Multiple
tricks can be applied on top of the histograms to improve retrieval perfor-
mance. We tested a various number of bins for both histograms, smoothing
of counts over neighboring bins, soft assignment of values, binarization of the
bin values, normalization of values over histograms, and creation of joint his-
togram for distance and angle. Euclidean distance is again used to compute
the dissimilarity score between two layouts.

2.4 Layout Alignment

The alignment of the image layout to the map layout is done by ICP algo-
rithm. The basic idea of ICP is to iteratively find the nearest point from
point cloud B to each point from point cloud A and apply a proper rigid
transformation on point cloud A so that the distance between corresponding
points from A and B is minimized. In our case, we do not have point clouds
but line segment sets, but we can easily transform the line segments to point
clouds by sampling points along the lines. We also tried to apply the point
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Figure 5: We show the localization error of pipeline with point-to-point ICP
alignment, initialized from ground truth camera pose, and for three levels
of random error added to the ground truth pose. The first (dark blue)
curve shows ICP performance when initialized by image pose estimate from
NetVLAD-based image retrieval. Evaluated on office1/gates362 scene.

sampling only on one of the sets and using point-line or point-line-segment
distance metrics in the ICP loop.

As stated above, we store the image layout in the local coordinate frame
of the camera, and therefore, once we align the image layout to the map, we
can easily derive the camera pose relative to the map coordinate frame.

3 Experimental Evaluation

We evaluated the localization pipeline on the 12 Scenes dataset [26], cap-
turing 12 room-scale scenes by an RGB-D sensor. As the 12 Scenes dataset
does not provide a layout of the rooms, we extracted the layout from room
point clouds in a similar manner as we do with images. The performance of
localization is evaluated by plotting localization success rate curves at given
error thresholds, i.e., the percentage of query images that have localization
error (Euclidean distance and rotational difference) under given thresholds.

The first set of ablation experiments focused on the evaluation of the ICP
alignment algorithm with a point-to-point distance metric. We initialized
the alignment in the ground truth pose and gradually increased a random
initialization error to see how the ICP would be able to cope with decreasing
initialization quality. The results in Fig. 5 show that the alignment perfor-
mance significantly falls together with the increasing initialization error, and
even small initialization error results in a significant decrease in alignment
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Figure 6: Performance evaluation of pipeline local layout retrieval stage. The
first value marks the number of distance bins, the second number of angular
bins, both might have a bin overlap (in square brackets), or the values can
be assigned in the soft manner (soft). The bins can be structured to form a
single joint histogram over all possible distance-angle combinations (joint).
The values in the histogram can be binarized (bin) and normalized to unit
sum (norm). Evaluated on office1/gates362 scene.

quality. On the other hand, the initialization by image retrieval is working
reasonably well and is not as far behind the ground truth initialization as
expected. Note that the quality of rough pose estimate of retrieval is greatly
influenced by the spatial distribution of database camera poses relative to
the query camera poses, as the best possible query pose estimate is always
the pose of the nearest database camera.

The second set of experiments focused on searching for optimal layout
descriptor parameters. As the number of tested parameter values is large,
Fig. 6 shows only a selected subset with reasonable localization performance.
The curves mark localization error of retrieval part of the pipeline only,
i.e., without the ICP pose refinement. A surprising result is that layout-
based retrieval can achieve similar performance as image-based retrieval,
which needs more storage space by several orders of magnitude. The best-
performing layout descriptor setup used 100 line distance and 36 line angle
bins in the joint setup; therefore, the final histogram had 3600 bins in total.
Both the distance and angular bin values have 2/3 overlap, which means
that a single value will be assigned to three neighboring distance and three
neighboring angular bins. This approach is an alternative to soft assignment,
where the values assigned to bins are inverse to the relative distance from
the two neighboring bin centers. The last two tested parameters were bin
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Figure 7: Comparison of pure image retrieval vs. hierarchical pipeline on top
of an image sequence with increasing length. As the 12 Scenes dataset [26]
is captured as a sequence of video frames, consecutive frames were used for
temporal geometry integration. Evaluated on office1/gates362 scene.

value binarization to either zero or one and normalization, so the values over
the whole histogram sum to one. The other selected parameter sets do not
fall far behind the best performing, but we can see a minor advantage of soft
assignment or bin overlapping over the case when none of these techniques
is used.

The last experiment we show in this paper was performed to find out
how the localization performance depends on the size of the part of the
scene visible for the pipeline. The results in Fig. 7 show that increasing the
visible part leads to a decrease in ambiguity both during the retrieval and
alignment steps. The first step from using only a single image to the usage of
5 consecutive frames adds around ten percent, and integrating the geometry
over more frames further increases the performance. The increasing trend
seems to stop at 40 frames, and merging geometry from 50 frames does not
increase the success rate anymore. A similar effect could be achieved by
using a camera with a wider field of view lens.

4 Conclusion

Our paper deals with visual localization using environment layouts. We de-
veloped a prototype of a hierarchical localization system, which uses image
or layout retrieval for rough pose estimate and an ICP algorithm for precise
pose refinement. The performed experiments show that the pipeline is capa-
ble of pose estimation at reasonable precision. On top, the developed layout
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descriptor achieves similar retrieval performance to the current state-of-the-
art image-based approach while having much lower storage space consump-
tion.

As the state-of-the-art in neural scene understanding is moving fast for-
ward, we would like to get rid of dependence on depth sensors and employ
the monocular depth estimation or monocular depth extraction stage in the
pipeline. Another part of the pipeline where we would like to employ higher-
level image understanding is the filtering of movable objects, which cannot
be used for localization.
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[1] Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD:
CNN architecture for weakly supervised place recognition. In: CVPR
(2016)

[2] Armagan, A., Hirzer, M., Lepetit, V.: Semantic segmentation for 3D
localization in urban environments. 2017 Joint Urban Remote Sensing
Event (JURSE) pp. 1–4 (2017)

[3] Armagan, A., Hirzer, M., Roth, P.M., Lepetit, V.: Learning to Align
Semantic Segmentation and 2.5D Maps for Geolocalization. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp.
4590–4597 (2017)
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